

Controlling the indoor environment using wood

Mark Hughes Aalto University, Finland

"Wood and Health" Seminar, 28th November 2018, Oslo

The material and the indoor environment
The material and people

What do we know about wood?

In addition to being a good structural material, wood has:

- Relatively **low thermal conductivity** (it is a good insulator)
- Moderately high heat capacity ('thermal mass' can store heat well)
- Has a relatively **low effusivity** (exchanges heat with the environment slowly) and
- Is hygroscopic (loves water!)

Also we know that:

• Wood is **very anisotropic** (its properties depend on direction of measurement)

• And it varies a lot from species to species

And that....

• Wood feels pleasant and warm to the touch and is visually interesting

Can we use these characteristics to better effect?

Indoor environment – materials – people

Comfort, health and the indoor environment

(Source: Simonson, C. J., Salonvaara, M. & Ojanen, T., Improving Indoor Climate and Comfort with Wooden Structures, VTT Publications 431, Technical Research Centre of Finland, Espoo 2001)

The material and the indoor environment

(How do the material properties affect the indoor environment)

Several ways in which we can utilize wood, including:

- Harnessing its ability to buffer internal relative humidity (relying its hygroscopic properties)
- Making use of the enthalpy changes arising from sorption ('heat of sorption'), coupled with its thermal buffering ability

Moisture buffering of building materials

(Source: Simonson, C. J., Salonvaara, M. & Ojanen, T., Improving Indoor Climate and Comfort with Wooden Structures, VTT Publications 431, Technical Research Centre of Finland, Espoo 2001)

Measuring moisture buffering ability

MBV practical= $\Delta m/S \cdot \Delta RH$

 Δm – moisture exchange S – open surface area ΔRH – change in relative humidity

Calculations and measurements were done in accordance with NORDTEST method

- How do different species buffer relative humidity?
- Is the buffering ability anisotropic?

Practical Moisture Buffering Value, MBV_{practical}

Practical Moisture Buffer Value classes according to the Nordtest method

Moisture buffering in practice

- Buffering found to be about 4 x greater axially than transversely
- Distinct species effects: greater buffering capacity in softwood species
- Heartwood less effective than sapwood (in pine)

Right: Concept moisture buffering panel created by students of the Aalto University Integrated Interior Wooden Surfaces course

Heat of sorption

Heat of adsorption

Heat of desorption

 As dry wood adsorbs moisture heat is generated and as wet wood dries, heat is required

Measuring surface temperature changes in wood due to sorption

Experimental

• Temperature rise on the transverse surface of a pine wood block during adsorption

Surface temperature rise due to heat of adsorption

Dupleix, A., Van Nguyen, T., Vahtikari, K. et al. Wood Sci Technol (2017). https://doi.org/10.1007/s00226-017-0968-8

The material and people

(*How do humans interact with wood?*)

(http://gizmodo.com/how-your-tongue-actually-can-stick-to-cold-metal-1677719843)

Wood

WOOD IS PERCEIVED

IS PERCEIVED QUANTIFIABLY WARMER

How much colder is 'colder'?

Ceramic tile vs pine

Oak vs pine

General conclusions

- The **properties** of wood can be used to **passively** influence or control in the interior environment of a building, which can then have an effect on comfort and health
- The **amount of wood**, the **orientation** of the exposed surface, the **species** and whether it is **coated** or not all play an important role in determining the magnitude of the effect
- The **warmer** or **cooler** '**feeling**' elicited by wood can be used as a means of indirectly affecting the indoor environment