Timber-concrete composite structures - an overview

Roberto Crocetti Professor of Structural Engineering

Table of contents

- Why composite structures
- The importance of shear connectors
- Type of shear connectors
- The research at Lund University
- Notched connections
 - introduction
 - Research at Lund
- Need of further research

Why composite structures?

Some favourable properties of timber

- Environmentally friendly
- Specific strength and stiffness
- Low weight- Easy to prefabricate, transport and erect
- Easy (and cheap) to shape
- ...and much more (aesthetics, low price, availability, workability, etc.)

However, timber has also some unfovourable properties...

Some **unfavourable** properties of timber

1. Low mass

2. Low Young's modulus

- 3. High variability of mechanical properties
- 4. etc

Low mass Low Young's modulus

- Acoustics and vibrations
- Deep floor structure

- Tilting
- Wind-induced vibration

High variability of mechanical properties

Large scatter \rightarrow low charactiristic strength

So, what is the solution?

Timber- concrete composite structures

Prefabricated concrete floor, span 8 m, Lund University, 2015

- Significant increase of stiffness (not least in the transversal direction) → reduced vibrations
- Increase of mass → better stability against overturning/tilting, and better acoustic performance
- Reduced depth of floor → better economy

The importance of the shear connectors

Behaviour of beams with varying composite action

A simple example

No composite action (separated elements)

Full-composite action (separated elements)

A simple example

Timber-concrete beams with incomplete composite action

Composite action	Axial stiffness	Bending stiffness
None	$E_1 \cdot A_1 + E_2 \cdot A_2 = (E \cdot A)_0$	$E_1 \cdot I_1 + E_2 \cdot I_2 = (E \cdot I)_0$
Full	$E_1 \cdot A_1 + E_2 \cdot A_2 = (E \cdot A)_0$	$(E \cdot I)_0 + E_1 \cdot A_1 \cdot e_1^2 + E_2 \cdot A_2 \cdot e_2^2$
Incomplete	$E_1 \cdot A_1 + E_2 \cdot A_2 = (E \cdot A)_0$	$(E \cdot I)_0 + \gamma_1 \cdot E_1 \cdot A_1 \cdot e_1^2 + E_2 \cdot A_2 \cdot e_2^2$
E_1, A_1, I_1	6 	
<u>~</u>		

N.A.

 $E_{2}, A_{2},$

Timber-concrete beams with incomplete composite action

Composite action	Axial stiffness	Bending stiffness
None	$E_1 \cdot A_1 + E_2 \cdot A_2 = (E \cdot A)_0$	$E_1 \cdot I_1 + E_2 \cdot I_2 = (E \cdot I)_0$
Full	$E_1 \cdot A_1 + E_2 \cdot A_2 = (E \cdot A)_0$	$(E \cdot I)_0 + E_1 \cdot A_1 \cdot e_1^2 + E_2 \cdot A_2 \cdot e_2^2$
Incomplete	$E_1 \cdot A_1 + E_2 \cdot A_2 = (E \cdot A)_0$	$(E \cdot I)_{0} + \gamma_{1} E_{1} \cdot A_{1} \cdot e_{1}^{2} + E_{2} \cdot A_{2} \cdot e_{2}^{2}$
E ₁ ,A ₁ , I ₁	e 6 4	$0 \le \gamma_1 \le 1$
\sim		• 1

N.A.

 $E_{2}, A_{2},$

Timber-concrete beams with incomplete composite action

Incomplete
$$E_1 \cdot A_1 + E_2 \cdot A_2 = (E \cdot A)_0$$
 $(E \cdot I)_0 + \gamma_1 \cdot E_1 \cdot A_1 \cdot e_1^2 + E_2 \cdot A_2 \cdot e_2^2$

How important is "k"

Relationship between the bending stiffness of the composite structure and the slip modulus of the joint on a logarithmic scale (Van der Linden, 1999)

How important is the shear stiffness of the connector (K)?

Relationship between the bending stiffness of the composite structure and the slip modulus of the joint on a logarithmic scale (Van der Linden, 1999)

Type of shear connectors

Typical connectors

Figure 2.3 Examples of timber-concrete connections with: nails (A1); glued reinforced concrete steel bars (A2); screws (A3); inclined screws (A4); split rings (B1); toothed plates (B2); steel tubes (B3); steel punched metal plates (B4); round indentations in timber, with fasteners preventing uplift (C1); square indentations, ditto (C2); cup indentations and prestressed steel bars (C3), nailed timber planks deck and steel shear plates slotted through the deeper planks (C4), steel lattice glued to timber (D1); and steel plate glued to timber (D2).

Typical connectors – shear stiffness (qualitative)

Research at Lund University

Research at Lund University: the first concept (2009)

Steel tube d=12 mm, t=2mm

Self-tapping screw: 11x250 -

T-connector in a "real floor"

W-connector

W-connector in a "real floor"

Bending stiffness of the floors

Research at Lund University: the second concept (2012-2013)

1. Insert full-threaded screws

2. Prepare the formworks

3. a) Cast the concrete

b) Turn the beams upside downc) Put the beam in the formwork

4. After concrete has cured, turn the floor upside down to "right" position

5. Done!

Load vs. mid-span deflection – 2 tests

Load vs. end-slip – 2 tests

Long-term behaviour

Another type of prefabricated floor

1: Insert screws

2: Twist upside down and cast concrete

3: Let cure and twist upside down again

Detail of the support

Concrete C40/50 t = 80mm Tests

Dynamic tests

Impulse hammer

Accelerometre

Measuring points in the floor

Results

w/o load, f1=9,23 Hz

with load, f1=6,27 Hz

Results

w/o load, f1=9,23 Hz

with load, f1=6,27 Hz

Erik Lindstén & Karl-Johan Öberg

The notched connection

General design rules

- Total depth: $h_{tot} \sim L/25$
- Concrete depth : h_{conc} ~ 0.3 h_{tot} (avoid tension in concrete)
- Number of notches:
 - L<6m \rightarrow 2 notches/half-span
 - $6m < L < 10m \rightarrow 3$ notches/half-span
- Notch depth: 20 30 mm
- Notch length: 150 200 mm

Notch spacing

- Suggested distance from end grain: > 200 mm
- Place notches so that $F_1 \approx F_2 \approx F_3$

Notched connections: possible failure modes

Notched connections tests at Lund University

a) four plates, length approx. 6,5 m andb) a number of small pieces for shear test specimens

The notched connection

The glued connection

The two CLT plates

Plate 1: 450 x 120, span 6300

Plate 2: 450 x 180, span 6300

load procedure according to EN 26891

Notch: 200x450x25 Stiffness $k_{04} \approx 1000 \text{ kN/mm}$

Failure modes

Notched specimens

The full-scale tests

Dimension	type 1 [mm]	type 2 [mm]
Span	6300	6300
Width	450	450
Thickness of CLT	120	180
Thickness of concrete	60	80
Overall depth of beam	180	260

The manufacturing of full-scale specimens

The full-scale tests

The full-scale tests

Failure modes

Some test results

Symm,

Parametric study

Further research

- Develop prefabricate systems for both floors and bridges with:
 - CLT + concrete
 - nail laminated deck + concrete
 - Stress laminated + concrete
 - Glulam + concrete
- Monitor moisture content in timber at the interlayer between timber and concrete, both in service class 1, 2 and 3 → when do we need to protect the wood
- Study the compatibility between wood and new (more environmentally friendly) concrete types, e.g. *fly ash concrete*
- ...and much more

Takk for din oppmerksomhet